Codling moth management in Washington pear

John E. Dunley
Washington State University
Tree Fruit Research and Extension Center
Wenatchee, WA
Pear pest management

• Key pests
 ▪ Pear psylla
 ▪ Spider mites
 ▪ Codling moth
 ▪ Pear rust mite
 ▪ Others
 • Leafrollers
 • Grape mealybug
 • True bugs

Codling moth is relatively low
Pear IPM

• Many tools
 - For many pests
 - Most new tools control more than one pest

• Problem of plenty
 - IPM system is:
 • More complex
 • More considerations
 • More decisions
 • (more cost?)
Hard or soft?

• Mating disruption
 ▪ Is an important option
 ▪ Esp. in soft programs

• Chemical management
 ▪ Remains most important
 ▪ Even in soft programs

• Biocontrol is a good goal
 ▪ But tough to rely on

• Integrate
 ▪ Use the best of both chemical and biological controls
CM Biology

• Overwinter as mature larvae
• Pupate in ground or on-tree
• Susceptible to predators, nematodes
CM Biology

• Sting-first instar larvae chews through skin and dies
• Entry- larvae successfully colonizes fruit

Dunley - Pear Day, Jan. 20, 2005
CM Sampling

• **Information is necessary**
 - Product choice based on pressure
 - New insecticides have specific timing requirements

• **Traps, pheromone lures**
 - Reliable for measuring relative density
 - Important for understanding DD prediction

• **Visual inspection**
 - Necessary for detecting hot spots, immigration
Degree-Day Models

- Predict events that are difficult to observe
 - CM egg deposition
- Necessary to optimize timing
- Must be used in conjunction with traps
 - Trap data takes precedence over mathematical models
Why use traps?

Atypical flight activity/Immigration

traps detect this

Dunley - Pear Day, Jan. 20, 2005
3rd Generation/Late Flight

DD models predict this

Unprotected

10 Aug

21 d residual

Predicted hatch

Dunley - Pear Day, Jan. 20, 2005
CM Thresholds

• Most difficult decision in IPM—“When to Spray”

• Trap catch affected by
 ▪ Mating disruption products
 ▪ Lure choice
 ▪ Trap maintenance
 ▪ Trap placement

• Your experience is most important!
 ▪ Use your past history of damage
 • Hot spots, borders, etc.
 ▪ Look for damage when walking through
 • Check thousands of fruit
Best Chance for Success

Interrupt life cycle at all stages

- Adulticides or Pheromones
- Nematodes
- Parasites
- Predators
- Virus

Interrupt the life cycle

- Ovicides or Larvicides
- CM protected in fruit - virus and delayed mortality

Dunley - Pear Day, Jan. 20, 2005
Codling moth control

• Chemical control is the key

• Mating disruption is the base

• Economics are important
 ▪ Population pressure lower in pear
 ▪ Fewer applications often necessary in pear
Materials for codling moth

• **OPs** - the standard
 - Guthion and Imidan
 - OPs = problems

• **IGRs**
 - Intrepid
 - Esteem, Dimilin
 - Rimon (Novaluron)
 - First year on apple
 - Not on pear yet

• **Neonicotinyls**
Neonicotinyls

- Less problems than OPs
- Assail
 - Several years now
- Calypso
 - New last year
- Clutch
 - Coming in the future

 - Other neonicotinyls for pear psylla and GMB only
 - Provado
 - Actara
Neonicotinyl - bioassays

Bioassay

<table>
<thead>
<tr>
<th>Method</th>
<th>Field Rate</th>
<th>LC_{50}</th>
<th>Toxicity Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Residual</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Topical</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

High toxicity ratio = High acute toxicity (works better)
Neonicotinyl - bioassays

Assail Bioassay – ovicide

<table>
<thead>
<tr>
<th>Method</th>
<th>Field Rate</th>
<th>LC_{50}</th>
<th>Toxicity Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Residual</td>
<td>44.1</td>
<td>34.9b</td>
<td>1.3</td>
</tr>
<tr>
<td>Topical</td>
<td>44.1</td>
<td>0.50a</td>
<td>88.2</td>
</tr>
</tbody>
</table>

Calypso Bioassay – ovicide

<table>
<thead>
<tr>
<th>Method</th>
<th>Field Rate</th>
<th>LC_{50}</th>
<th>Toxicity Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Residual</td>
<td>75.0</td>
<td>281.0b</td>
<td>0.3</td>
</tr>
<tr>
<td>Topical</td>
<td>75.0</td>
<td>2.0a</td>
<td>37.5</td>
</tr>
</tbody>
</table>

Clutch Bioassay – ovicide

<table>
<thead>
<tr>
<th>Method</th>
<th>Field Rate</th>
<th>LC_{50}</th>
<th>Toxicity Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Residual</td>
<td>62.0</td>
<td>62.3b</td>
<td>1.0</td>
</tr>
<tr>
<td>Topical</td>
<td>62.0</td>
<td>27.1a</td>
<td>2.3</td>
</tr>
</tbody>
</table>

High toxicity ratio = High acute toxicity (works better)

Dunley - Pear Day, Jan. 20, 2005
Assail - field trials 2004

Apple

Lower rate at 14d interval is an effective alternative

Pear

No difference between formulations relative to CM efficacy

Dunley - Pear Day, Jan. 20, 2005
Calypso - field trials 2004

% CM Injured Fruit

Apple

- Calypso 250dd, +21
- Guthion 1250dd, +21

Replace a Guthion application with neonic when worker safety is important.

Low end of rate range can be effective on pear in low-mod pressure.

95% reduction

Dunley - Pear Day, Jan. 20, 2005
Clutch - field trial 2004

Clutch has not provided adequate CM control in trials conducted over the past two seasons.

Larvicidal activity in bioassays still gives some hope.

Avg. 28-48% reduction in % CM injured fruit.
Neonicotinyl - bioassays

Assail Bioassay – ovicide

<table>
<thead>
<tr>
<th>Method</th>
<th>Field Rate</th>
<th>LC<sub>50</sub></th>
<th>Toxicity Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Residual</td>
<td>44.1</td>
<td>34.9<sup>b</sup></td>
<td>1.3</td>
</tr>
<tr>
<td>Topical</td>
<td>44.1</td>
<td>0.5<sup>a</sup></td>
<td>88.2</td>
</tr>
</tbody>
</table>

Calypso Bioassay – ovicide

<table>
<thead>
<tr>
<th>Method</th>
<th>Field Rate</th>
<th>LC<sub>50</sub></th>
<th>Toxicity Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Residual</td>
<td>75.0</td>
<td>281.0<sup>b</sup></td>
<td>0.3</td>
</tr>
<tr>
<td>Topical</td>
<td>75.0</td>
<td>2.0<sup>a</sup></td>
<td>37.5</td>
</tr>
</tbody>
</table>

Clutch Bioassay – ovicide

<table>
<thead>
<tr>
<th>Method</th>
<th>Field Rate</th>
<th>LC<sub>50</sub></th>
<th>Toxicity Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Residual</td>
<td>62.0</td>
<td>62.3<sup>b</sup></td>
<td>1.0</td>
</tr>
<tr>
<td>Topical</td>
<td>62.0</td>
<td>27.1<sup>a</sup></td>
<td>2.3</td>
</tr>
</tbody>
</table>

High toxicity ratio = High acute toxicity

Dunley - Pear Day, Jan. 20, 2005
Diamond/Rimon - field trials 2004

Apple

No difference between formulations relative to CM efficacy

Pear

No difference between rates relative to CM efficacy

Dunley - Pear Day, Jan. 20, 2005
Rimon - Fruit Marking on D’Anjou

Rimon 0.83EC applied at 2 X the suggested use rate (80 fl oz/a) marked fruit on developing D’Anjou pears

More research will be necessary to determine the significance of fruit marking noted in 2004 trials

Dunley - Pear Day, Jan. 20, 2005
Rimon

Rimon kills CM eggs laid on top of residues – oil kills eggs topically – Assail kills eggs topically and kills CM larvae

Dunley - Pear Day, Jan. 20, 2005
Codling Moth Management:
NO-OP Tank mixes

1st generation

April May June

DD from biofix 0 100 300 500 700 900

adult flight

eggs laid

oil

eggs hatch

Tank mixes of different modes

Dunley - Pear Day, Jan. 20, 2005
Codling Moth Management: NO-OP Tank mixes

1st generation

April May June

DD from biofix 0 100 300 500 700 900

adult flight

eggs laid

oil

eggs hatch

Larvicide + ovicidal Activity

Assail + Rimon

Tank mixes of different modes

Dunley - Pear Day, Jan. 20, 2005
Codling Moth Management: NO-OP Tank mixes

1st generation

- Eggs laid
- Eggs hatch
- Adult flight
- Assail + Rimon
- Residual ovicidal Activity

Tank mixes of different modes

DD from biofix

April 0 100 300 500 700 900 May June

Dunley - Pear Day, Jan. 20, 2005
NO-OP Tank Mix Trials - Apple

- **Oil (1%)** @ 200/1200dd
- **Neonic + IGR** @ 350/1350dd

85-90% reduction

Same timing

No tank-mix

No significant difference

85-90% reduction

Tank-mix

6 apps

4 apps

Airblast application
The tank-mix program performed at least as good as programs where the materials were applied separately.
Resistance management

• Do not use the same class of product against more than one generation.

• Use mating disruption to reduce use of new insecticides.

• Monitor orchards and only apply insecticides when necessary.
Why resistance management?

- Resistance is in Washington
Why resistance management?

• Resistance is in Washington
• Cross-resistance is there for many chemicals
 ▪ Guthion
 ▪ Intrepid
 ▪ Neonicotinyls?
 • Probably
The Peshastin Ck. Areawide Project

• The Peshastin Creek Growers Association
 ▪ Association of local growers and fieldmen

• Pest Management Program
 ▪ Based on Organic insect management practices
 • Areawide techniques to control Pear psylla and Codling moth
 • Reduce non-selective pesticide use
 • Increase potential migration of beneficial insects
Areawide Organic – Codling moth

- Population was greatly reduced
 - Following scare of spring 2003

![Codling moth flight graph]

Dunley – Pear Day, Jan. 20, 2005
Areawide Organic – codling moth damage

• Damage kept very low
 ▪ 2 locations in 2003 raised the means

<table>
<thead>
<tr>
<th></th>
<th>2003</th>
<th>2004</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conv</td>
<td>0.54%</td>
<td>0.01%</td>
</tr>
<tr>
<td>Org</td>
<td>0.73%</td>
<td>0.10%</td>
</tr>
<tr>
<td>Soft</td>
<td>0.01%</td>
<td>0.03%</td>
</tr>
</tbody>
</table>

Cumulative moth catch per generation

% CM infested fruit

Dunley – Pear Day, Jan. 20, 2005
Benefits of the new materials?

- **Worker safety issues**
 - Eliminate cholinesterase testing
- **Worker management**
 - Re-entry periods short (4-12 hours)
- **Environment**
 - Conservation of bio-control agents
 - Avoid stream buffer zone issues
 - No or negligible effects of wildlife
- **Prepare for a NO organophosphate future**