Organic and IPM Programs: Areawide Pest Management

Peshastin Creek Project Year II Monitoring

Tara M. Madsen, John E. Dunley
WSU-TFREC
The Peshastin Ck. Areawide Project

• The Peshastin Creek Growers Association
 ▪ Association of local growers and fieldmen
 • Mission: Increase the use of environmentally-friendly pest management techniques to enhance water and soil quality, improve worker safety and reduce pesticide inputs

• Pest Management Program
 ▪ Based on Organic insect management practices
 • Areawide techniques to control Pear psylla and Codling moth
 • Reduce non-selective pesticide use
 • Increase potential migration of beneficial insects
In 2002

- PCG Assoc. was formed
- Preliminary monitoring and analysis
- Equal effectiveness
 - Levels of pest control
 - Levels of predators
 - Cost of pesticide inputs
 - Full Cost/Benefit analysis not yet completed
2003 Monitoring

• Comparison of 3 management types
 ▪ **Organic**—91 acres
 ▪ Organic management techniques
 ▪ Surround, Oil, Sulfur, Azadirachtin, Bt, Spinosad, CM granulosis virus and Mating disruption
 ▪ **Soft**—82 acres
 ▪ Prefer organic methods, use IGRs and selective pesticides
 ▪ Surround, Oil, Sulfur, Avaunt, IGRs, and MD
 ▪ Endosulfan, Carzol, Actara used prebloom
 ▪ **Conventional**—56 acres
 ▪ Standard pest management techniques
 ▪ Surround, Oil, IGRs, Carzol, Chloronicotinyls, Abamectin, Organophosphates and MD
2003 Monitoring

• Area
 - Peshastin Creek Valley, WA
 • Blewett Pass Hwy 97
 - 230 ac. sampled
 • ~300 ac. of pears in the valley
 - 41 plots
 • 1.5 to 10 ac. in size

• Changes from 2002
 - Increase in sampling coverage and precision
 • Sample sites increased 22 ➔ 41
 • Plots defined as orchard blocks
 • Grower management units
2003 Monitoring

• Pest Monitoring
 ▪ Sampled weekly
 ▪ Pear psylla
 • Adults—late March through early Sept.
 • Eggs and Nymphs—April to Sept.
 ▪ Mites etc.—TSSM, ERM, PRM, GMB
 ▪ Codling moth
Codling Moth Monitoring

• One trap/block, upper \(\frac{1}{3} \)rd of canopy
 - Average of 1 trap/ 5.6 acres
 - Delta traps with Pherocon cap lures
 • 10 mg lures in mating disruption
 • 1 mg lures in blocks w/out MD

• Late April through late Sept
 - Checked once/week

• Degree day modeling
 - 12 weather monitoring stations
CM Damage Evaluations

• 1,000 fruit/block
 ▪ 50 trees/block
 • 10 fruit low and 10 fruit high/tree

• 1st generation
 ▪ 16 July – 29 July
 ▪ ~½ of high counts done from ladders

• 2nd generation
 ▪ 28 Aug – 10 Sept
 ▪ All counts from the ground
Predator Monitoring

- Sampled with adult PP
 - 25 limb-taps/block

- Beneficial Insects
 - Spiders, Deareocorids, Ladybird beetles, Snakeflies, Lacewings, Anthocorids, Campylomma, predatory mites...
Results

• Analysis
 ▪ ANOVAs
 • Data normalized using Box-Cox ($x+1$) transformations
 ▪ Fisher’s Protected Least Squares Differences Tests
Pear Psylla Densities

- **Adults**
 - Averaged over entire season
 - Higher in ORG than CONV
 - No significant differences until late season
 - ORG blocks higher than both CONV and SOFT
Pear Psylla Densities

- **Adults**
 - All showed lower densities in 2003 than in 2002
 - Rescaled 2003 graph

![Graph of Pear Psylla Densities](image-url)

- Mean # PPA/ tray sample
- 2002 PP
- Conventional, Soft, Organic
PP densities

- **Nymphs**
 - Few small differences through season

- **Eggs**
 - No differences throughout season

![2003 Nymphs graph]

![2003 Eggs graph]
PP densities

- Nymphs
- Eggs
- Densities lower in 2003 than in 2002
 - Rescaled 2003
Mites and Other Pests

• Pear Rust Mite
 - Problematic in some ORG and SOFT
 - Damage high in one ORG orchard (3 blocks) w/o adequate prebloom treatments of sulfur
 - No available postbloom
 - No statistical differences

![PRM Densities Chart]

Madsen and Dunley, January 2004. WSU-TFREC
Mites and Other Pests

- Two-spotted spider mites, European Red mites, Grape mealybugs
 - Pressure low in 2003
Codling Moth Pressure

- First generation
 - Trap catch extremely variable between blocks
 - ORG captures higher than other blocks
 - Two hot-spots account for most of ORG catch
Codling Moth Pressure

- 2nd generation
 - ORG moth captures higher than SOFT
 - Neither significantly different from CONV
CM Damage

• Most damage 2nd generation

• No significant differences between programs

% CM Damage, 2003

- 0.73%
- 0.54%
- 0.01%
CM Damage

- Two notable occurrences of 2nd generation damage
 - **CONV** block: sprayable pheromone
 - **ORG** block: no Cyd-X, only 1 spinosad
CM Damage vs. Pressure

CONV CM control program: Sprayable MD, 1 Avaunt

ORG (1) CM control program: No-Mate MD, 3 Entrust, 4 Cyd-X

Madsen and Dunley, January 2004. WSU-TFREC
CM Damage vs. Pressure

ORG (1) CM control program: No-Mate MD, 3 Entrust, 4 Cyd-X

ORG (2) CM control program: No-Mate MD, 1 Entrust

Madsen and Dunley, January 2004. WSU-TFREC
Predator Densities

- Remained low through most of the season
 - Late season increases in ORG and SOFT
 - Densities similar to 2002
Materials cost for insect pest control

- 2003
 - No significant differences between programs

2003 Mean Cost for Insect Pest Control

2003 Cost Distribution

Madsen and Dunley, January 2004. WSU-TFREC
Materials cost for insect pest control

- **2003**
 - Slightly higher costs
 - High CM pressure in 2003
- **2002**
 - No differences in programs

2002 Cost Distribution

<table>
<thead>
<tr>
<th></th>
<th>ORG</th>
<th>SOFT</th>
<th>CONV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>300</td>
<td>500</td>
<td>500</td>
</tr>
<tr>
<td>Median</td>
<td>300</td>
<td>500</td>
<td>500</td>
</tr>
<tr>
<td>Min</td>
<td>200</td>
<td>300</td>
<td>300</td>
</tr>
<tr>
<td>Max</td>
<td>600</td>
<td>600</td>
<td>600</td>
</tr>
</tbody>
</table>

![2002 Mean Program Cost](chart.png)
Materials cost for insect pest control

- Allocation by pest
 - ORG spent a greater proportion on CM than did SOFT or CONV

![Graph showing allocation of spray cost to PP, CM]

CM Cost Allocation

<table>
<thead>
<tr>
<th>% of Spray Cost to CM</th>
</tr>
</thead>
<tbody>
<tr>
<td>70%</td>
</tr>
<tr>
<td>60%</td>
</tr>
<tr>
<td>50%</td>
</tr>
<tr>
<td>40%</td>
</tr>
<tr>
<td>30%</td>
</tr>
<tr>
<td>20%</td>
</tr>
<tr>
<td>10%</td>
</tr>
<tr>
<td>0%</td>
</tr>
</tbody>
</table>

Conv | Soft | Org

ave %cost for PP ave %cost for CM

Madsen and Dunley, January 2004. WSU-TFREC
Discussion

• Pear psylla densities
 ▪ Lower in 2003 relative to 2002, all 3 programs
 ▪ Adult PP
 • Greater in ORG relative to CONV
 ▪ Difference occurred near harvest
 ▪ PP Nymphs
 • Below economic threshold in all 3 programs
Discussion

• Two-spotted spider mites, GMB
 ▪ Pressure low in 2003
 ▪ Management consistently effective

• Pear rust mites
 ▪ Problematic for SOFT and ORG programs
 • Inadequate prebloom control ➔ economic damage in 3 related ORG blocks
 ▪ Lack of available postbloom interventions a limitation to selective programs
Discussion

• Codling moth
 ▪ Pressure high in several SOFT and ORG blocks
 • SOFT blocks
 ▪ Intrepid and Avaunt with Mating Disruption
 ▪ Successful in controlling CM
 • ORG blocks
 ▪ Entrust (spinosad) and Cyd-X (codling moth virus) with MD
 ▪ Very effective in controlling very high pressure
Discussion

• Predators
 ▪ Present in low numbers
 ▪ Late-season increases in SOFT, ORG
 • Follow increase in PP densities
 • May never see large numbers of predators
 ▪ Damage thresholds for pear psylla may be too low to sustain higher densities of natural enemies
Discussion

• Materials costs for programs
 ▪ Statistically equivalent
 ▪ SOFT program most variable in cost
 ▪ Variability based on:
 The Ghost of Pest Problems Past
 • Historic pest densities
 ▪ Carryover of pests ➔ problems in current year
 • Expectations
 ▪ What chemicals can (should) do
 • Tolerance of pest levels
Cost allocations by pest

- Given that
 - Mean program costs are $= $, and allocations to pests are \neq
 - Suggests that CM \neq PP as a pest
- We know:
 - Soft/Organic chemicals less effective, expensive

- Cost, effectiveness of materials matters for CM
 - high cost in ORG for CM

- but not for PP
 - low cost in ORG for PP (despite less effective chemicals)
 - ???
 - Biocontrol
 - Even though we don’t see numbers
Conclusion

• Organic and near-organic Soft pest management strategies
 ▪ Successful Pest Control?
 • Over a two year period, relative to Conventional
 • YES
 ▪ Cost comparable?
 • YES

• Further analyses
 ▪ Currently being conducted
 • Fruit yield and quality
 • Cost and return
 • Grower satisfaction
 ▪ A third year of study
Thank you

• And thanks to
 ▪ The Peshastin Creek Growers Association
 • Growers
 • Co-operating fieldmen

• And for funding from
 ▪ IFAFS/RAMP
 ▪ WA-TFRC